# **PhyzReference:** Symbols

| Name    | Pronunciation | Lei      | tter | Name    | Pronunciation | Let | ter |
|---------|---------------|----------|------|---------|---------------|-----|-----|
| Alpha   | AL fuh        | А        | α    | Nu      | NOO           | Ν   | ν   |
| Beta    | BAY tuh       | В        | β    | Xi      | ZI            | Ξ   | ξ   |
| Gamma   | GAM uh        | Γ        | γ    | Omicron | O mih kron    | Ο   | 0   |
| Delta   | DEL tuh       | $\Delta$ | δ    | Pi      | PI            | Π   | π   |
| Epsilon | EP sih lon    | Е        | 8    | Rho     | ROE           | Р   | ρ   |
| Zeta    | ZAY tuh       | Ζ        | ζ    | Sigma   | SIG muh       | Σ   | σ   |
| Eta     | AY tuh        | Η        | η    | Tau     | TAO, TAW      | Т   | τ   |
| Theta   | THAY tuh      | Θ        | θ    | Upsilon | UP sih lon    | Y   | υ   |
| Iota    | eye OH tuh    | Ι        | L    | Phi     | FI, FEE       | Φ   | φ   |
| Kappa   | KAP uh        | Κ        | к    | Chi     | KI            | Х   | χ   |
| Lambda  | LAM duh       | Λ        | λ    | Psi     | SI, SEE       | Ψ   | ψ   |
| Mu      | MYOO          | Μ        | μ    | Omega   | o MEH guh     | Ω   | ω   |

### THE GREEK ALPHABET

#### MATHEMATICAL SYMBOLS

| Symbol            | Definition                       | Examples                                                                              |
|-------------------|----------------------------------|---------------------------------------------------------------------------------------|
| x                 | proportional to                  | Time spent studying $\propto$ grade earned in a class                                 |
| $\approx$         | approximately equal to           | 5,367,831 ≈ 5,367,832                                                                 |
| $\sim$            | about; approximately             | The population of the US is $\sim$ 300,000,000.                                       |
| =                 | defined as; identical to         | velocity = change in position per change in time                                      |
| ¥                 | not equal to                     | if $a = 3$ and $b = 5$ , $a \neq b$                                                   |
| >                 | greater than                     | 2 + 2 > 3                                                                             |
| <                 | less than                        | 2 + 2 < 5                                                                             |
| ≥                 | greater than or equal to         | If $x + 5 \ge 12$ , then $x \ge 7$                                                    |
| $\leq$            | less than or equal to            | $f \le \mu N$                                                                         |
| >>                | much greater than                | 5,367,831,729,405 >> 1                                                                |
| <<                | much less than                   | 1 << 5,367,831,729,405                                                                |
| $\Rightarrow$     | leads to; yields                 | $a + b = c \implies b = c - a$                                                        |
| •••               | therefore                        | $a = b$ and $b = c$ $\therefore$ $a = c$                                              |
| $\checkmark$      | square root                      | $\sqrt{(9+16)} = 5$                                                                   |
| Σ                 | the sum of                       | $\Sigma \mathbf{F} = m\mathbf{a}$                                                     |
| $\Delta$          | change in                        | $\mathbf{v} \equiv \Delta \mathbf{d} / \Delta t$                                      |
| Х                 | the vector "x"                   | the displacement vector $\mathbf{x} = (4m, 7m)$                                       |
| II                | parallel to                      | the ceiling is II to the floor                                                        |
| $\perp$           | perpendicular to                 | the floor is $\perp$ to the wall                                                      |
| x                 | absolute value of <i>x</i>       | -23  = 23                                                                             |
| $ \mathbf{x} , x$ | the scalar value of $\mathbf{x}$ | $\mathbf{a} = (7m; 30^\circ)$ ∴ $ \mathbf{a}  = 7m; \mathbf{c} = (3m, 4m)$ ∴ $c = 5m$ |

## **PhyzReference:** Directions

In physics, we must often be mindful of **direction**. If something is moving, for example, it must be moving in some direction. Or if a force is being exerted on an object, that force is being exerted in some direction. Below are a few reference diagrams that sort out the various ways scientists and mathematicians specify directions.

#### One-Dimensional (1D)

A particle that is constrained to motion in one dimension can move only forward or backward along a line. Surely you have fond memories of the "number line." The number line is an example of "one-dimensional space," also known as a "line."



#### Two-Dimensional (2D)

Two-dimensional space is known as a "plane." Examples of 2D space include a table top, the floor, the glass in a window, or any other flat surface.

**Polar Coordinates** 

#### **Rectangular (Cartesian) Coordinates**

"Up" is considered the positive y direction.



#### Three-Dimensional (3D)

Three-dimensional space is known simply as a "space." Space includes all the familiar geometric directions. All real objects occupy three dimensions. For instance, a rectangular solid (like a shoebox) has dimensions of length, width, and height.

#### Symbolic Notation

| Left  | ←             |
|-------|---------------|
| Right | $\rightarrow$ |
| Up    | 1             |
| Down  | ↓             |
| In    | ×             |
| Out   | •             |

\*IN is away from you: into the paper, into the board \*\*OUT is toward you: out of the paper, out of the board

#### Vocab

**Collinear**: along the same line **Parallel**: in the same direction

Conventional +z**3D Coordinates** -X +v+x

-Z

**Concurrent**: at the same point Antiparallel: in opposite directions (In in www with