PhyzExamples: Electric Current & Circuits

Physical Quantities • Symbols • Units • Brief Definitions

Charge • *q* or *Q* • coulomb [*KOO lom*]: C • A characteristic of certain fundamental particles. **Current** • *I* • coulomb per second: C/s or ampere: A • The rate at which electric charge flows. **Voltage** • *V* or \mathcal{E} • joule per coulomb: J/C or volt: V • Electric potential energy per unit of charge; electric "oomph."

Resistance • R • volt per amp: V/A or ohm: Ω • A measure of the obstruction to flow of electric charge that a *body* possesses.

Power \bullet *P* \bullet watt: W \bullet The rate at which energy is transferred in an electric circuit.

Equations

 $I = q/t \bullet current = charge / time$ $I = V/R \text{ or } \mathcal{C}/R \bullet \text{Ohm's Law} \bullet current = voltage / resistance$ $P = IV \text{ or } I\mathcal{C} \bullet \text{ Joule's Law} \bullet power = current \cdot voltage$ $P = I^2R \bullet power = square of current \cdot resistance$ $P = V^2/R \text{ or } \mathcal{C}^2/R \bullet power = square of voltage / resistance$

Smooth Operations Examples

What is the current in a wire if 15.7 C of charge move past a point in the wire every 2.3 s?
 q = 15.7 C t = 2.3 s l = ?
 q = q/t
 l = 6.8 A

3. If a 100-W stereo system is plugged into

the 120-V line voltage used in US homes,

how much current does it draw?

3. P = 100 W V = 120 V I = ?

P = IV

I = P/V

I = 0.83 A

I = 100 W / 120 V

2. A current of 0.82 A passes through a $47-\Omega$ resistor. What is the potential difference across the resistor?

(The question is asking for the voltage.)

2. $I = 0.82 \text{ A} \text{ R} = 47 \Omega \text{ V} = ?$ I = V/R V = IR $V = 0.82 \text{ A} \cdot 47 \Omega$ $\underline{V} = 39 V$

4. What is the resistance of a 1500-W hair dryer that draws 13 A of current?

4. P = 1500 W I = 13 A R = ? $P = I^2 \text{R}$ $R = P/I^2$ $R = 1500 \text{ W} / (13 \text{ A})^2$ $R = 8.9 \Omega$

5. An appliance with a resistance of 36 Ω operates at 9.0 V. At what rate does it dissipate energy? (That is, what's the power?)

5. $R = 36 \Omega$ V = 9.0 V P = ? $P = V^2/R$ $P = (9.0 V)^2 / 36 \Omega$ <u>P = 2.3 W</u> 6. How much voltage must be applied to an $8-\Omega$ resistor to produce 27 W of power?

6.
$$P = 27 W R = 8 V V = ?$$

 $P = V^2/R$
 $V = \sqrt{PR}$
 $V = \sqrt{(27 W \cdot 8 \Omega)}$
 $V = 15 V$

Equations from combining Ohm's Law and Foule's Law Complete all the petals of the flower by rearranging I = V/R, P = IV, $P = I^2R$, and $P = V^2/R$.

