PHYZSPRINGBOARD: CURRENT AND VOLTAGE

It is often difficult to distinguish current from voltage when first learning about electric circuits. The following exercise uses analogies to develop a conceptual distinction between the two. The analogies are neither perfect nor complete, but they should help you understand these otherwise abstract quantities.

Definitions

The rate at which charge flows, or the amount of charge that passes a point in a specific interval of

time is <u>current</u>

The amount of energy stored in a specific amount of charge is ______voltage

Analogies

In each case described below, characterize the "current" and "voltage." Draw a pointer needle on the ammeter to indicate the current and another on the voltmeter to indicate the voltage.

Changes

11. Suppose a trickle of water were coming out of a hose. If the faucet controlling the flow of water to the hose were then "cranked up," what—if anything—would change in terms of current and voltage?

Both current and voltage increase.

12. Suppose one spillway gate of a large dam were open. If a second were then opened, what—if anything—would change in terms of current and voltage?

Current increases; voltage remains the same.

13. Suppose an adjustable shower head were configured to give a low-pressure flow. If it were then adjusted to give a high-pressure spray (without changing the rate of water usage), what—if anything —would change in terms of current and voltage?

Current remains the same; voltage increases.

*Hint: consider automobile traffic, for example.