

DR. SHIVE'S AMAZING WYANE'S AMAZING DEMONSTRATIONS OF WAVE PROPERTIES

Name:	Per:	Date:	P:CC C-51, 31, 32

Steel Rods

The wave machine (originally produced by Bell Laboratories), consists of a series of thin, uniform steel rods attached through their centers by a square steel spine wire. Collectively, they act as coupled torsional pendula (when twisted, the spine wire exerts a restoring torque).

Observe a wave pulse propagating through the machine.

ACTUAL OUTCOMES

PREDICTIONS

What effect would the following changes have on the way the wave traveled?

- 1. Longer or shorter rods.
- 2. Stronger or weaker spine wire.
- 3. Taller or smaller wave (vary the amplitude).
- 4. Longer or shorter wave (vary the wavelength).

Record your observations of the following phenomena in sketches and brief descriptions.

REFLECTION

1. Reflection From a Free End.

2. Reflection From a Fixed End.

3. See the super-slinky reflection on *P:CC* at C-51. Is it a fixed end (slinky nailed to a board) or free end (slinky tied to a string attached to a board)? Watch the second showing to verify your prediction.

SUPERPOSITION

1. Observe and record two pulses in the same orientation (up/up or down/down).

- 2. Do the pulses collide like billiard balls or pass through each other like ghosts?
- a. Describe a demonstration that would help prove one hypothesis or the other.
- b. Carry out the demonstration and record the results.
- 3. a. See the slinky wave "collisions" and computer-animated wave "collisions" on P:CC at C-31 and C-32.
- b. Draw a "comic-strip" sequence showing what happens before, during, and after a sine crest and a square trough come together. (Ask the instructor to pause the display when the pulses "collide.")

