Conservation of Momentum

Universal Solution Method Examples

Equations

 $p = p' \cdot \text{momentum before an event} = \text{momentum after event [conservation of momentum]}$ $p_1 + p_2 = p_1' + p_2' \cdot \text{momentum of two objects before an event} = \text{momentum of two objects after event}$ [conservation of momentum]

 $m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$ • conservation of momentum applied to two bodies in one dimension.

Universal Solution Method Examples

1. William Tell fires a 0.1 kg arrow at a 1.2 kg block of wood on his son's head. If the arrow hits the block at 50 m/s and sticks into it and the son's head is frictionless, how fast will the arrow/block combination travel directly thereafter?

LIST:	$m_1 = 0.1 \text{ kg} m_2 = 1.2 \text{ kg} v_1 = 50 \text{ m/s} v_2 = 0$
DON'T THINK:	p = p' $p_1 + p_2 = p_1' + p_2'$ $m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$
THINK:	v_2 = 0, Inelastic collision: final speeds are the same: v_1^{\prime} = v_2^{\prime} = v^{\prime}
APPLY:	$m_1 v_1 + O = m_1 v' + m_2 v'$ $m_1 v_1 = (m_1 + m_2) v'$
SOLVE v':	v' = m ₁ v ₁ / (m ₁ + m ₂) v' = (0.1 kg · 50 m/s) / (0.1kg + 1.2kg) <u>v' = 3.8 m/s</u>

2. A 2 kg pumpkin is bowled at 6 m/s across a frozen pond ($\mu = 0$). Shortly after its release, an explosion within causes the pumpkin to separate into a 1.5 kg piece and a 0.5 kg piece. If the 1.5 kg piece continues forward at 3 m/s, what is the final speed of the 0.5 kg piece?

LIST:	m1 = 1.5 kg	m2 = 0.5 kg	$v_1 = v_2 = 6 m/s$	v ₁ ′ = 3 m/s	v ₂ ' = ?
Don't Think:	p = p' $p_1 + p_2 = p_1' + m_1v_1 + m_2v_2 =$				
THINK:	Explosion—ir	nitial speeds a	are equal: $v_1 = v_2 =$	V	
APPLY:	$m_1 v + m_2 v = n$ $(m_1 + m_2)v = 1$				
SOLVE v2':	$m_2v_2' = (m_1 + v_2' = ((m_1 + m_2)^2 + ((m_1 + m_2)^2 + ((1.5 \text{ kg} + v_2' + 15 \text{ m/s})^2))))$	2)v – m1v1) / n	n ₂ /s - 1.5 kg · 3 m/s	∍)/(0.5 kg)	

3. A dynamics cart collides and sticks to a cart initially at rest. The moving cart had a mass of 1.25 kg and stationary cart had a mass of 0.75 kg. After the collision, the two carts move at 0.58 m/s. What was the initial speed of the moving cart?

LIST:	$m_1 = 1.25 \text{ kg}$ $m_2 = 0.75 \text{ kg}$ $v_1 = ?$ $v_2 = 0$ $v' = 0.58 \text{ m/s}$
DON'T THINK:	p = p' $p_1 + p_2 = p_1' + p_2'$ $m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$
THINK:	$v_2 = 0$, Inelastic Collision—final speeds are equal: $v_1' = v_2' = v'$
APPLY:	$m_1v_1 + O = m_1v' + m_2v'$ $m_1v_1 = v'(m_1 + m_2)$
SOLVE v1:	v₁ = v′(m₁ + m₂) / m₁ v₁ = 0.58 m/s (1.25 kg + 0.75 kg) / 1.25 kg v₁ = 0.93 m/s

4. Snoopy rides a wagon at 4.3 m/s along a level sidewalk and then jumps forward off the wagon. Snoopy's mass is 2.4 kg and the wagon comes to a complete stop when Snoopy jumps forward. If Snoopy flies through the air at 6.7 m/s, what was the mass of the wagon?

LIST:	$m_1 = 2.4 \text{ kg} m_2 = ? v = 4.3 \text{ m/s} v_1' = 6.7 \text{ m/s} v_2' = 0$
DON'T THINK:	p = p' $p_1 + p_2 = p_1' + p_2'$ $m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$
THINK:	$v_2' = 0$, Explosion—initial speeds are the same: $v_1 = v_2 = v$
APPLY:	$m_1 v + m_2 v = m_1 v_1' + O$
SOLVE m ₂ :	$m_{2}v = m_{1}v_{1}' - m_{1}v$ $m_{2}v = m_{1} (v_{1}' - v)$ $m_{2} = m_{1} (v_{1}' - v) / v$ $m_{2} = 2.4 \text{ kg} (6.7 \text{ m/s} - 4.3 \text{ m/s}) / 4.3 \text{ m/s}$ $m_{2} = 1.4 \text{ kg}$