PhyzJob: Conservation of Momentum Number Puzzles

PART 3: MORE PUZZLES

INSTRUCTIONS: In each of the scenarios below, some information regarding the system (or elements within the system) is given. Determine the missing quantity based on what you know about conservation of momentum.

1. A Stationary Bomb Explodes.

v = 0 m/s

 $m_1 = 9.3 \text{ kg}$ $v_1' = -2.7 \text{ m/s}$ $m_2 = ?$ $v_2' = +4.8 \text{ m/s}$

DON'T THINK:

$$p = p'$$

$$p_1 + p_2 = p_1' + p_2'$$

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

THINK:

$$v_1 = v_2 = v = 0$$

APPLY:

$$0 = m_1v_1' + m_2v_2'$$

SOLVE: $O = m_1v_1' + m_2v_2'$

$$m_2v_2' = -m_1v_1'$$

$$m_2 = -m_1v_1'/v_2'$$

$$v_2' = -9.3 \text{ kg} \cdot (-2.7 \text{ m/s}) / 4.8 \text{m/s}$$

$$m_2 = 5.2 \text{ kg}$$

2. Moving Blobs of Clay Collide.

$$m_2 = 4.7 \text{ kg}$$

 $v_2 = 0 \text{ m/s}$

DON'T THINK:

$$p = p'$$

$$p_1 + p_2 = p_1' + p_2'$$

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

THINK:
$$v_2 = 0$$
, $v_1^1 = v_2^1 = v^2$

APPLY: $m_1v_1 = m_1v^2 + m_2v^2$

skatte h

v' = 3.5 m/s

$$m_1v_1 = m_1v' + m_2v'$$

$$m_1v_1 = v'(m_1 + m_2)$$

$$v_1 = v' (m_1 + m_2) / m_1$$

$$v_1 = 3.5 \text{ m/s} \cdot (7.8 \text{ kg} + 4.7 \text{ kg}) / 7.8 \text{ kg}$$

$$v_1 = 5.6 \text{ m/s}$$

1.5.2 kg 2.5.6 m/s

3. A Moving Bomb Explodes.

$$m_1 = 8.1 \text{ kg}$$
 $m_2 = ?$
 $p = p'$
 $p_1 + p_2 = p_1' + p_2'$
 $m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$
 $v_1 = v_2 = v$

$$\begin{aligned} v_1' &= -3.7 \text{ m/s} & v_2' &= +17.4 \text{ m} \\ m_1 v_1 &+ m_2 v_2 &= m_1 v_1' + m_2 v_2' \\ m_2 v_2 &- m_2 v_2' &= m_1 v_1' - m_1 v \\ m_2 (v_1 - v_2)' &= m_1 (v_1' - v) \\ m_2 &= m_1 (v_1' - v) / (v_1 - v_2') \end{aligned}$$

$$m_2 &= 8.1 \text{ kg } (-3.7 \text{ m/s} - 5.2 \text{ m/s}) / (5.2 \text{ m/s} - 17.4 \text{ m/s})$$

$$m_2 &= 5.9 \text{ kg}$$

4. Moving Blobs of Clay Collide. (YOU draw the "speed lines.")

 $m_1 = 6.0 \text{ kg}$

 $v_1 = +7.0 \text{ m/s}$

$$m_2 = 4.0 \text{ kg}$$

/s $v_2 = ?$
 $p = p'$

$$p_1 + p_2 = p_1' + p_2'$$

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

$$v_1' = v_2' = v'$$

$$m_1v_1 + m_2v_2 = m_1v' + m_2v'$$

$$v' = -2.2 \text{ m/s}$$

$$m_1v_1 + m_2v_2 = m_1v' + m_2v'$$

$$m_2v_2 = (m_1 + m_2)v' - m_1v_1$$

$$v_2 = [(m_1 + m_2)v' - m_1v_1] / m_2$$

$$v_2 = [(6kg + 4kg)(-2.2kg) - 6kg\cdot7m/s] / 4kg$$

$$v_2 = -16kg$$

5. A Moving Bomb Explodes.

$$m_1 = 8.0 \text{ kg} \qquad m_2 = 5.0 \text{ kg}$$

$$v = 3.9 \text{ m/s}$$

$$p = p'$$

$$p_1 + p_2 = p_1' + p_2'$$

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

$$m_1v + m_2v = m_1v_1' + m_2v_2'$$

3. 5.9 kg 4. -16 m/s 5. 15 m/s

 $v_1 = v_2 = v$

SO OF THE PARTY.

$$v_1' = -3.0 \text{ m/s}$$

$$v_2' = ?$$

$$m_1v + m_2v = m_1v_1' + m_2v_2'$$

$$v(m_1 + m_2) - m_1v_1' = m_2v_2'$$

$$v_2' = v(m_1 + m_2) - m_1v_1' / m_2$$

$$v_2' = 3.9m/s(8.0kg + 5.0kg) - 8.0kg - 3.0m/s / 5.0kg$$

$$v = 15 \text{ m/s}$$